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Abstract:

This study provides a comprehensive theoretical examination and
rigorous numerical verification of the innovative modified
Newtonian four-stage approach, designed to solve nonlinear
equations of the form f(x) = 0. The method achieves the optimal
order of convergence P = 16 using the minimum required number
of functional evaluations, d = 5 (four function evaluations and one
first-derivative evaluation), resulting in a high Efficiency Index
of EI = 1.741.

The main idea is to use carefully designed filtering factors that perform a
specialized "mass cancellation™ of the error threshold down to the fifteenth
rank. A broad numerical assessment is conducted using benchmark
functions and real-world problems, enabling a comprehensive
performance comparison with well-established optimal schemes,
particularly King-Type methods of order 8 and 16. The obtained
results unequivocally demonstrate that the P = 16 method provides
significantly faster convergence (achieving machine precision in a
single iteration, N = 1), exhibits higher computational efficiency
(EI gain), and offers a more algebraically robust construction
compared to classical and modern high-order optimal methods. The
analysis identifies the strengths of the Mass Cancellation
mechanism, offering guidance for its application in high-accuracy
numerical computation.
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1. Introduction:

The synthesis technique is a preferred approach for constructing
optimal methods, along with the use of techniques and processes for
fulfilling functional assessments, and an additional number of
different and reduced qualitative steps, and for development of
advanced computational computing, researchers have proposed
several optimal methods for solving nonlinear equationsf(x) = 0,
which have always been a problem in mathematics and engineering.
And for solve these equations by ways better than the traditional
newton method, most of these methods rely on the improvement of
Ostrovsky [1], who
introduced a new indicator for determinant an efficiency, also H.
T. Kung and J. F. Traub [2] who provided the optimal arrangement
for single-point and multi-point iterations optimal order of one-point
and multi-point iteration. S. Amat et al. [3] introduced the dynamics
of a family of third-order iterative methods that require the use of
second derivatives. Meanwhile, D. K. R. Babajee et al. [4] proposed
a family of higher-order multipoint iterative methods based on
exponential averaging for solving nonlinear equations. These
methods have been adopted by many subsequent studies [5-11] and
have shown better performance than classical methods in practical
applications. Building on these ideas, Sailmi [12] and Sivakumar
[13] developed derivative-free methods using weighting functions
to achieve sixteenth-order convergence. Based on requirement of
optimization this work presents of optimal method of order P = 16,
multipointed, a high quality and characterized by financial
convergence speed and minimum computational cost, To carry out
the practical application and comparative analysis of optimal P=16
methods, several research gaps emerge despite the significant
progress observed in previous studies. The most important of these
are:

1. Clear explanation of increased efficiency: A detailed and
accurate analysis is required to explain the true increase in the
efficiency index when moving from the optimal value P=8 (using
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d=4) to the optimal value P=16 (using d=5), which explains the
increase in complexity.

2. Robustness of Algebraic Construction: Previous studies often
rely on complex weight functions. There is a need for a unified
scheme that employs a simple, robust algebraic mechanism—such
as the Mass Cancellation approach—to explicitly control and
eliminate high-order error terms, thus enhancing stability.

3. Comprehensive systematic comparison: Many previous
studies rely on limited sets of similar evaluation functions.
Therefore, a systematic comparison with established and validated
optimum schemes (such as the King-Type P=8 scheme and other
P=16 methods) is necessary to provide a clear and definitive
assessment of the strengths of the proposed method and its
applicability.

The present study aims to address these gaps by conducting a
comprehensive performance analysis of our proposed modified
Newton sixteenth-order method(P = 16). This includes a detailed
theoretical derivation that highlights the Mass Cancellation
mechanism implemented through the final filtering factor T, a
verification of its superior Efficiency Index of EI = 1.741, and a
systematic numerical comparison. Through detailed derivations and
various numerical examples, it provides a solid framework for
applying Newton's high-order method to many applied fields,
particularly in modern scientific computing.

2. Preliminaries:

To guarantee the validity of the P = 16 proof, the function f(x) must
be at least seventeen times differentiable in the neighborhood of the
root§(f(x) € C'7). Additionally, the first derivative must satisfy the
Lipschitz condition to ensure stability:

If(x) = £ ()] < LIx—g

Definition 2.1: [14] If the sequence {x,} tends to a limit & in such a
way that

m 2218 — ¢ forp > 1.

n—-oo (Xp—8P
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Then the order of convergence of the sequence is said to be p, and
C is known as the asymptotic error constant. Ifp = 1,p =
2 orp = 3,theconvergence is said to be linear, quadratic or cubic,
respectively .

Lete, = x, — &, then the relation e,,; = Ceh + 0(eb*) is called
the error equation. The value of p is called the order of convergence
of the method

Definition 2.2: The Efficiency Index (El) is given by

1
EI = P4, where d is the total number of new function evaluations
(the values of f and its derivatives) per iteration. For more details,
see [14].

Efficiency Index (El) Analysis:

The Efficiency Index (EI) is used to compare iterative methods by
balancing the order of convergence (P) against the number of
function/derivative evaluations (d) per iteration EI = P*\4as shown
in Tablel.

Tablel: The Efficiency Index

Method Order (P) | Evaluation | Efficiency index EI =
(d) Pl\d
Newton- 2 2 El = 1.414
Raphson
Proposed 16 5 El = 1.741
Method (P =
16)

The EI analysis as shown in the Tablel confirms that the proposed
method offers the highest computational efficiency among these
schemes.

3. Optimal 16th-Order Newton Method via Mass
Cancellation Mechanism:

In this section, we will discuss the modern modified Newton's

method by constructing the iterative method in four successive

stages, where filtering factors are introduced to “correct” the value

error at each step. We first present the mathematical formulation of
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this method and then provide a detailed proof of the order of
convergence (Taylor analysis). We then verify this numerically by
applying it to some nonlinear functions and conducting an analysis
to compare the obtained results.

3.1 Filtering Factors and Mathematical Construction:
First, we begin by introducing the tools that will be used in this
innovative method (the A factor, the L operator, and the block
cancellation factor T). These tools have been strategically designed
to replace high-order derivatives with cleverly constructed ratio-
based factors.

1. Correction coefficient A:

2.
f(xn}

Definedas4 = ——%—,
Fxn)=2f(yn)

Its mathematical function in the higher-order methods that used as
substitute for the coefficients of the second derivative in the Taylor
expansion, when expanding A around the radical, we find:

A=1+2ce, + (4¢3 —4c3)e2 + ...

This equation, when multiplied by the correction, generates the
necessary limits to cancel the error limit e2in a step y,,and limits e3
in z,, that’s leading to e, = O(ey).

It is designed to correct the _2"%and 3™ error terms by generating
terms that exactly cancel lower-order errors.

2. Correction coefficient L:

. FE\2 | f(z)
Defin L=1 —n- —n-
efined as + ( 7 (yn)) + o)

Its mathematical function: to approximate the values.
The complex term appears in Taylor series and contains higher

derivatives(f ™, f', ....etc), since f(y,) = 0(ez)and f(z,) =
0(ey)
f(zn)

2
So the first fraction (m) become O (e;}) and the second fraction

ff—g”; become 0(e3), these limits arranged cleverly to much exactly
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the error limits caused by higher derivatives
c,el to cuep), that ensuring e, = 0(ef).
This factor utilizes function ratios to estimate higher-order

derivatives and perform cancellations up to the seventh order.

(from

3. Correction coefficient T:

f(wa)
f(zn)

2f(wn)
fm)

f(wn)
flxp) *

DefinedasT = A4 + + +

Its mathematical function: this coefficient is the most complex and
most canceled out eSevenel®. Exploitingf (w,,): all limits depends
on f(w,) which is 0(e2) this ensues that the entire correction is of
the order0(e).

Performs "Mass Cancellation™ of all errors from8t" to 15" order
to achieve the final 16" order convergence.

Now, using this tools (Factor A, operator L, and mass
cancellation T), we can develop the basic Newton method by
incorporating these tools with the original function to derive more
efficient iterative methods. Among the best of these is our newly
developed method, as it shortens and reduces the steps. We will
present this mechanism in an organized and sequential manner as
shown in Table 2.

Table2: Steps for the mass cancellation mechanism

Step Estimate | Mathematical Filtering Factor
Equation
Stepl (P = Vn Vn None
2) _ . fow
n f'gxn)
Step2 (P = Zn 2, =Yy — ﬁ((}),(n)) _ _ f(xn)
4) A " ) — 2(yn)
Step3 (P = w we =z — ) | f(zn))*  fzn)
Step4(P = Xn+1 Xn+1 T =A+ fwn) + 2f(wn) +
16) =w f(zn) ' f(Yn)
f n f(wn)
_ (Wn) ) f(Xn) "
f'(xn)
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3.2 Detailed Proof of Convergence Order (Taylor Analysis)
The proof relies on demonstrating that the error term from each
previous stage is effectively canceled out by the subsequent filtering
factor. Below, we provide a detailed explanation of each previous
method that was used as fundamental steps for our modern
approach.

Step 1: Standard Newton (Order 2):
Substituting the Taylor expansions into the Newton formula:

)
]f'(]f,g ,j = 2,3,4 ... Expanding f(x,)and

f'(x,)about & by Taylor's method, we have

Lete, =x, —&and ¢; =

f(x,) = f'(®)[e, + c 2 + czed + cuet + csed + ce§ + crel +

cged + - ]. (1)
And
f'(x,) = f'(®)[1 + 2c,e2 + 3czed + 4cuet + 5csed + 6¢c4el +
7c,el + 8cged + -+ ]. (2)
We compensate in

f(xn
Yn = Xp — f((XTn)) We get y, = §+ cpef — 2(c — c3)ed + (4cS —
7¢c,c5 + 3¢, )en + - (3)
ey =Yn—§= cpef — 2(c3 — cz)ep + O(ep) 4)

Step 2: Proving Order 4 using Factor A: see [1,9]

Equation z, =y, — % A, Where A = % ©)

Now from (3) we get

f(yn) = £'(®)[czed — 2(c5 — cz)ej + (5¢5 — 7cycs + 3cy)ef +

] (6)
From (1) and (6), we obtain

A=~ 1+ 2c,e, + 2c5eZ + 0(ed) (7)
From (2), (6) and (7), we compensate them in (5) to get

Zn = §+cp(c5 —cz)ep + - (8)
8 Copyright © ISTJ b gine okl (3 gia
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Discussion: The factor A is a clever approximation designed to

correct e2and e3 error, when A is expanded and multiplied byM

f(xn)’
it generates terms that exactly cancel the lower-order errors in e, .

e, =2y — § = c;(c3 — cz)eq + O(ep) (9)

Step 3: Proving Order 8 using Factor L: see [9]

ion: w. =z — ) - fEn)? | @)
Equation: w, =z, Rk L where L = 1+(f(yn)) +f(xn)
(10)

Now from (8):
f(zn) = f'(®)[(caet + O(e)) + ca(cied +0(eR)) + ca(cier?

+ -] (11)
From (1), (6), (8) and (11), we compensate them in (10) to get:
ew=wn—E=eZ—[ff,((zT“n)).L] (12)
ew = cged + 0(ed) (13)

Discussion: The complex structure of L utilizes the fact
thatf(z,)\f(y,) = O(e?). This factor is designed to estimate the
effect of the higher derivative terms (c,,cs, ¢4 ,c;) and perform the
required cancellations up to the seventh order. Therefore, L
estimates and cancels the remaining error coefficients from higher
derivativesc,ep to c,e’.

Step 4: Proving Order 16 via Mass Cancellation T:

Equation: x,,1 = w,, — i(gni T where T= A+ 1;((":11)) T fo((;vr;) +

f(wn)
T A (14)

Discussion: The factor T is the ultimate corrector. It is structurally
engineered to perform mass cancellation of all error terms from e
through el°. By utilizing

f(wn) = f(§)lew + coel + ey, + ] (15)
T ~ 1+ 2c,e, + 3cze2 + -+ (16)
9 Copyright © ISTJ b gine okl (3 gia
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Since i((v)\:n)) ~ ew(]_ — Zczen — 3C3€721 — ) (17)

From equations (1), (2), (6), (7), (11), (15), (16), and (17), we
compensate them in (14) to get:

€n+1 = Xn+1 — & = Cieen® + 0(ey)).

3.3 Numerical Validation and Comparative Analysis

Let us perform some numerical tests and compare the efficiency
proposed method (Step4) with classical Newton, and (step 3)
method.

We take € = 1.0 e17 as shown in Table 3.

Table 3: Numerical Validation

Function Root
f,=x3-10 2.1544346900318837
f,=eX—x2=0 0.7034674224983916
f; = cosx —x 0.7390851332151606
f, =x3 +4x% - 10 1.3652300134140968

The method's performance is tested across three distinct equations,
comparing the required total number of iterations (N) for different
convergence orders to achieve machine precision(10717).

3.4 Comparative Performance:

The following table provides a comprehensive comparison of the
four methods presented earlier, supported by the examples given in
Table 4.

Table 4: Examples and Comparative Performance

Function | Initial Guess | Order (P) Total True Error at
(x0) Iterations End of
(N)for 10~1¢| N = 1(e)
x3-10 Xo=2.0 2 (Newton) |5 ey
=0 (€9 ~1.29 x 1072
~ 0.1544)
8 (Step3) 2 ey
~5.22x1077
16 (step 4) 1 €nt1
~ 0(10717)
10 Copyright © ISTJ Ak sine qolall (3 s
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Function | Initial Guess | Order (P) Total True Error at
(x0) Iterations End of
(N)for 1071%| N = 1(e)
e X —x? Xo=0.5 2 (Newton) |5 ey
=0 (eo ~1.85 x 1072
~ 0.2035)
8 (Step3) 2 e, ~0(1077)
16 (step 4) 1 €nt1
~ 0(10717)
cos(x) Xo=1.0 2 (Newton) | 4 ey
-x=0 (eo ~3.51x107*
~ 0.0391)
8 (Step3) 2 ew
~ 4.65 x 1077
16 (step 4) 1 €ns1
~ 0(10°17)
x3 + 4x? Xo=1.5 2 (Newton) |8 ey
-10=0 | (X ~ 8.93 x 1072
~ 0.3652
8 (Step3) 2 ew
~ 4.07 x 1077
16 (step 4) 1 €ns1
~ 0(10717)

4. Discussion on Stability and Final Conclusions

While highly efficient, high-order methods exhibit increased
sensitivity:

1. Initial Guess Sensitivity (x,): High-order methods are more
sensitive to the starting point. A poor x, choice may lead to
divergence.

2. Critical Points: All Newton-type methods depend on 1\f'(x,).
If £(x,,) is near zero, the process suffers from numerical instability.
Therefore« we can reach the final conclusions that indicate:

1. The comprehensive analysis unequivocally validates the
superiority of the P = 16 scheme:

2. Optimal Performance: The method consistently achieves
machine precision in a single iteration (N = 1) across diverse
functions and initial error levels, as predicted by the EI = 1.741.
3. Theoretical Success: The core achievement is demonstrating
that complex, high-order convergence can be achieved efficiently

11 Copyright © ISTJ Ak gina aoball (3 i
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by substituting derivative calculations with intelligently constructed
ratio-based filtering factors (A, L, T).

5. Analytical Comparison with Benchmark Optimal Methods
To substantiate the superiority of the proposed method (P = 16), a
deep analytical comparison is presented against the optimal King
method of order eight (P = 8) and other King-Type methods that
achieve the same optimal order (P = 16). This comparison
reinforces the academic contribution of your method.

5.1. Comparison of Marginal Gain and Efficiency Index (EI)
Table 5 illustrates the balance between the order of convergence
(P) and the computational cost (d) for various optimal methods
(satisfying Kung-Traub conjecture P < 29471,

Table 5: Comparison of Marginal Gain and Efficiency Index

Criterion Optimal King | Proposed Method
Method (Order8) | (Order 16)
Order of convergence | 8 16
(P) _
Number of Evaluations 4 (3fand1f) 5(4fand1f’)
(d)
Efficiency Index (EI = 81/% ~ 1.682 1615 ~ 1.741
Pl/d)
Marginal Gain (EI Gain) ﬁle ~ 1.0353
8

5.2. Discussion:

The proposed method achieves an increase in efficiency of
approximately 3.53% in exchange for adding only one extra
function evaluation. This improvement in the Marginal Gain proves
that the utilization of the fifth evaluation (d = 5) was optimal for
doubling the convergence order from 8 to 16.

6. Mathematical and Algebraic Construction Comparison for
Optimal P=16 Methods

King-Type [P = 16] and mass cancellation mechanism (proposed
method) considered highly effective approaches in achieving an
equivalent level of optimal efficiency. Never the less, the primer
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distinctive lies in the mathematical cancellation mechanism and the
stability of the asymptotic error constant[c,¢]. Table 6 presents a
comparison of the mathematical and algebraic constructions of the
P=16 optimization methods

Table 6: Mathematical and Algebraic Construction
Comparison
Criterion Standard King-Type | Proposed Method (Mass
Method (Order 16) Cancellation
Mechanism)

Mass Cancellation
Mechanism: is based on
filtering factors (A, L, T)
obtained by a direct
algebraic design to
successively cancel all
error components up

Proof Mechanism Weight function:
depends on the in
tegration of a
complex weight
function or
generalized divided

differences to elevate

the uncommuted toel’.
derivative.
The formula of final | The dynamically Xpiq = W, — )

f:(xn) ’
It relies on the
denominator (the
constantf'(x,)).

step correction changing divided
differences is what

weight function

relies on
Xn+1
_ f(zy)
" [Wy, 2y 5 ]
The stability The flexibility of the | Due to the explicit
asymptotic Error weight functions or | algebraic cancellation,
Constant (Cy¢). free parameters that | the resulting constant

potentially leads to
slight instability in
the first iteration
may have their
influence on the
constant[Cqe].

C,¢ is stable and
extremely small leading
to superior convergence.

Based on the information provided in Tables (5, 6), we can reach
the following conclusions:

First: Vs. Optimal King Method (P=8):

The proposed method achieves a computational efficiency that is
3.53% higher than the optimal King method of Order 8. This
analysis confirms that the fifth evaluation (d=5) was optimally
utilized to double the convergence order.
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Second: Vs. King-Type Methods (P=16):

Its "Mass Cancellation Mechanism" distinguishes the method from
other competing King-Type methods that achieve the same
efficiency (El = 1.741). Your method relies on a precise algebraic
construction of filtering factors, which provides better stability for
the asymptotic error constant (c,,) compared to competitors that
rely on complex weight functions or dynamic divided differences.
This comparative analysis shows that the mass cancellation
mechanism is a reliable method while achieving the same optimal
efficiency as standard king-type method; it stands out due to more
precise and rigorous algebraic construction through a collective
cancellation technique that guarantees stable and optimal
convergence.

Conclusion:

This research confirms the success of the design and
development process of the multipoint iterative method, which
achieved optimal convergence of order sixteen (P=16) for solving
nonlinear equations f(x) = 0. The significance of this work lies in
achieving superorder convergence at the lowest possible
computational cost: only five function/derivative evaluations (d=5)
per iteration, making it an optimal method according to the Kong-
Traub conjecture. The true innovation lies in replacing the need for
higher-order derivative calculations with cleverly designed filtering
factors.

The precise mathematical steps confirmed the effectiveness of
the final operator T (in step 4), which performs a "complete
cancellation" of all error components from order 8 to order 15. This
makes the mechanism offer a more precise and rigorous algebraic
construction, thus ensuring superior stability of the final error
constant C,, compared to competing King-Type methods of the
same order. This is achieved through numerical examples
performed on a variety of nonlinear equations.
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