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Abstract: 

This study provides a comprehensive theoretical examination and 

rigorous numerical verification of the innovative modified 

Newtonian four-stage approach, designed to solve nonlinear 

equations of the form f(𝑥) = 0. The method achieves the optimal 

order of convergence 𝑃 = 16 using the minimum required number 

of functional evaluations, 𝑑 = 5 (four function evaluations and one 

first-derivative evaluation), resulting in a high Efficiency Index 

of 𝐸𝐼 ≈ 1.741. 
The main idea is to use carefully designed filtering factors that perform a 

specialized "mass cancellation" of the error threshold down to the fifteenth 

rank. A broad numerical assessment is conducted using benchmark 

functions and real-world problems, enabling a comprehensive 

performance comparison with well-established optimal schemes, 

particularly King-Type methods of order 8 and 16. The obtained 

results unequivocally demonstrate that the 𝑃 = 16 method provides 

significantly faster convergence (achieving machine precision in a 

single iteration, 𝑁 = 1), exhibits higher computational efficiency 

(𝐸𝐼 gain), and offers a more algebraically robust construction 

compared to classical and modern high-order optimal methods. The 

analysis identifies the strengths of the Mass Cancellation 

mechanism, offering guidance for its application in high-accuracy 

numerical computation. 
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 الملخص  

تقدم هذه الدراسة فحصًا نظريًا شاملًً وتحققًا عدديًا دقيقًا لطريقة نيوتن المعدلة المبتكرة 
f(x)ذي المراحل الأربع، المصممة لحل المعادلات غير الخطية من الشكل = . يحقق 0

باستخدام الحد الأدنى من عدد عمليات تقييم  P=16لمنهج رتبة التقارب المثلى هذا ا
d الدالة = )أربع عمليات تقييم للدالة وعملية تقييم واحدة للمشتقة الأولى(، مما ينتج   5

 .EI≈1.741عنه مؤشر كفاءة عالٍ 
ماعيًا" ج تتمثل الفكرة الرئيسية في استخدام عوامل ترشيح مصممة بعناية تُجري "إلغاءً 

متخصصًا لحد الخطأ وصولًا إلى الرتبة الخامسة عشرة.  أُجري تقييم عددي شامل 
باستخدام دوال مرجعية ومسائل واقعية، مما أتاح مقارنة أداء شاملة مع المخططات المثلى 

ل عليها بوضوح 61و 8الراسخة، ولا سيما طرق كينغ من الرتبة  . تُظهر النتائج المُتحصَّ
ذات كفاءة `ريقة تُوفر تقاربًا أسرع بكثير )تحقيق دقة الآلة في تكرار واحد، أن هذه الط

حسابية أعلى وتُقدم بنية أكثر متانة جبريًا مقارنةً بالطرق المثلى الكلًسيكية والحديثة 
الرتبة. يُحدد التحليل نقاط قوة آلية إلغاء الكتلة، ويُقدم إرشادات لتطبيقها في الحساب 

 قة.العددي عالي الد

http://www.doi.org/10.62341/afna3576
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طريقة نيوتن المعدلة، المعادلات غير الخطية، طرق تكرارية عالية  الكلمات المفتاحية:
 الرتبة، رتبة التقارب المثلى، مؤشر الكفاءة، آلية الإلغاء الجماعي.

 
 

1. Introduction: 
     The synthesis technique is a preferred approach for constructing 

optimal methods, along with the use of techniques and processes for 

fulfilling functional assessments, and an additional number of 

different and reduced qualitative steps, and for development of 

advanced computational computing, researchers have proposed 

several optimal methods for solving nonlinear equations𝑓(𝑥) = 0 , 
which have always been a problem in mathematics and engineering. 

And for solve these equations by ways better than the traditional 

newton method, most of these methods rely on the improvement of 

Ostrovsky [1], who 

 introduced a new indicator for determinant an efficiency, also  H. 

T. Kung and J. F. Traub  [2] who provided the optimal arrangement 

for single-point and multi-point iterations optimal order of one-point 

and multi-point iteration.  S. Amat et al. [3] introduced the dynamics 

of a family of third-order iterative methods that require the use of 

second derivatives. Meanwhile, D. K. R. Babajee et al. [4] proposed 

a family of higher-order multipoint iterative methods based on 

exponential averaging for solving nonlinear equations. These 

methods have been adopted by many subsequent studies [5–11] and 

have shown better performance than classical methods in practical 

applications. Building on these ideas, Sailmi [12] and Sivakumar 

[13] developed derivative-free methods using weighting functions 

to achieve sixteenth-order convergence. Based on requirement of 

optimization this work presents of optimal method of order 𝑃 = 16, 

multipointed, a high quality and characterized by financial 

convergence speed and minimum computational cost, To carry out 

the practical application and comparative analysis of optimal P=16 

methods, several research gaps emerge despite the significant 

progress observed in previous studies. The most important of these 

are: 

1. Clear explanation of increased efficiency: A detailed and 

accurate analysis is required to explain the true increase in the 

efficiency index when moving from the optimal value P=8 (using 

http://www.doi.org/10.62341/afna3576
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d=4) to the optimal value P=16 (using d=5), which explains the 

increase in complexity. 

2. Robustness of Algebraic Construction: Previous studies often 

rely on complex weight functions. There is a need for a unified 

scheme that employs a simple, robust algebraic mechanism—such 

as the Mass Cancellation approach—to explicitly control and 

eliminate high-order error terms, thus enhancing stability. 

3. Comprehensive systematic comparison: Many previous 

studies rely on limited sets of similar evaluation functions. 

Therefore, a systematic comparison with established and validated 

optimum schemes (such as the King-Type P=8 scheme and other 

P=16 methods) is necessary to provide a clear and definitive 

assessment of the strengths of the proposed method and its 

applicability. 

 

     The present study aims to address these gaps by conducting a 

comprehensive performance analysis of our proposed modified 

Newton sixteenth-order method(𝑃 = 16). This includes a detailed 

theoretical derivation that highlights the Mass Cancellation 

mechanism implemented through the final filtering factor T, a 

verification of its superior Efficiency Index of 𝐸𝐼 ≈ 1.741, and a 

systematic numerical comparison. Through detailed derivations and 

various numerical examples, it provides a solid framework for 

applying Newton's high-order method to many applied fields, 

particularly in modern scientific computing.  

 

2. Preliminaries: 

To guarantee the validity of the P = 16 proof, the function f(x) must 

be at least seventeen times differentiable in the neighborhood of the 

rootξ(f(x) ∈ C17). Additionally, the first derivative must satisfy the 

Lipschitz condition to ensure stability: 

 

|f ,(x) − f ,(ξ)| ≤ L|x − ξ| 
 

Definition 2.1: [14] If the sequence {xn} tends to a limit ξ in such a 

way that  

 

lim
n→∞

xn+1−ξ

(xn−ξ)p = C , for p ≥  1. 

http://www.doi.org/10.62341/afna3576
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Then the order of convergence of the sequence is said to be p, and 

C is known as the asymptotic error constant. Ifp =  1, p =
 2 or p =  3, the convergence is said to be linear, quadratic or cubic, 

respectively . 

 

Leten = xn − ξ, then the relation en+1 = C en
p

+ O(en
p+1

) is called 

the error equation. The value of p is called the order of convergence 

of the method 

  

Definition 2.2: The Efficiency Index (EI) is given by 

EI = P
1

d, where d is the total number of new function evaluations 

(the values of f and its derivatives) per iteration. For more details, 

see [14]. 

 

 Efficiency Index (EI) Analysis: 

The Efficiency Index (EI) is used to compare iterative methods by 

balancing the order of convergence (P) against the number of 

function/derivative evaluations (d) per iteration EI = P1\das shown 

in Table1. 

 Table1: The Efficiency Index 
Method Order (P) Evaluation 

(d) 

Efficiency index EI =

P1\d 

Newton-

Raphson 

2 2 EI ≈ 1.414 
 

Proposed 

Method (P =
16) 

16 5 EI ≈ 1.741 
 

The EI analysis as shown in the Table1 confirms that the proposed 

method offers the highest computational efficiency among these 

schemes. 

 

3. Optimal 16th-Order Newton Method via Mass 

Cancellation Mechanism: 

In this section, we will discuss the modern modified Newton's 

method by constructing the iterative method in four successive 

stages, where filtering factors are introduced to "correct" the value 

error at each step. We first present the mathematical formulation of 

http://www.doi.org/10.62341/afna3576
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this method and then provide a detailed proof of the order of 

convergence (Taylor analysis). We then verify this numerically by 

applying it to some nonlinear functions and conducting an analysis 

to compare the obtained results. 

 

3.1 Filtering Factors and Mathematical Construction:  

First, we begin by introducing the tools that will be used in this 

innovative method (the A factor, the L operator, and the block 

cancellation factor T). These tools have been strategically designed 

to replace high-order derivatives with cleverly constructed ratio-

based factors. 

1. Correction coefficient A: 

2.  

        Defined as 𝐴 =  
𝑓(𝑥𝑛}

𝑓(𝑥𝑛)−2𝑓(𝑦𝑛)
. 

 

Its mathematical function in the higher-order methods that used as 

substitute for the coefficients of the second derivative in the Taylor 

expansion, when expanding A around the radical, we find: 

 

𝐴 ≈ 1 + 2𝑐2𝑒𝑛 + (4𝑐2
2 − 4𝑐3)𝑒𝑛

2 + ⋯ … … … 
 

This equation, when multiplied by the correction, generates the 

necessary limits to cancel the error limit 𝑒𝑛
2in a step 𝑦𝑛and limits 𝑒𝑛

3 

in 𝑧𝑛, that’s leading to 𝑒𝑧 = 𝑂(𝑒𝑛
4). 

It is designed to correct the _2𝑛𝑑and 3𝑛𝑑 error terms by generating 

terms that exactly cancel lower-order errors. 

 

2. Correction coefficient L: 

Defined as 𝐿 = 1 + (
𝑓(𝑧𝑛)

𝑓(𝑦𝑛)
)

2

+
𝑓(𝑧𝑛)

𝑓(𝑥𝑛)
 

 

Its mathematical function: to approximate the values. 

The complex term appears in Taylor series and contains higher 

derivatives(𝑓(4), 𝑓′′′, … . 𝑒𝑡𝑐), since 𝑓(𝑦𝑛) = 𝑂(𝑒𝑛
2)𝑎𝑛𝑑 𝑓(𝑧𝑛) =

𝑂(𝑒𝑛
4) 

So the first fraction (
𝑓(𝑧𝑛)

𝑓(𝑦𝑛)
)

2

become 𝑂(𝑒𝑛
4) and the second fraction 

𝑓(𝑧𝑛)

𝑓(𝑥𝑛)
  become 𝑂(𝑒𝑛

3), these limits arranged cleverly to much exactly 

http://www.doi.org/10.62341/afna3576
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the error limits caused by higher derivatives (from 

𝑐7𝑒𝑛
7 𝑡𝑜 𝑐4𝑒𝑛

4),that ensuring 𝑒𝑤 = 𝑂(𝑒𝑛
8). 

This factor utilizes function ratios to estimate higher-order 

derivatives and perform cancellations up to the seventh order. 

 

3. Correction coefficient T: 

 

Defined as 𝑇 = 𝐴 +
𝑓(𝑤𝑛)

𝑓(𝑧𝑛)
+

2𝑓(𝑤𝑛)

𝑓(𝑦𝑛)
+

𝑓(𝑤𝑛)

𝑓(𝑥𝑛)
 . 𝐴  

 

Its mathematical function: this coefficient is the most complex and 

most canceled out 𝑒𝑛
8even𝑒𝑛

15. Exploiting𝑓(𝑤𝑛): all limits depends 

on 𝑓(𝑤𝑛) which is 𝑂(𝑒𝑛
8) this ensues that the entire correction is of 

the order𝑂(𝑒𝑛
8). 

Performs "Mass Cancellation" of all errors from8𝑡ℎ to  15𝑡ℎ  order 

to achieve the final 16𝑡ℎ order convergence. 

      Now, using this tools (Factor A, operator L, and mass 

cancellation T), we can develop the basic Newton method by 

incorporating these tools with the original function to derive more 

efficient iterative methods. Among the best of these is our newly 

developed method, as it shortens and reduces the steps. We will 

present this mechanism in an organized and sequential manner as 

shown in Table 2. 

Table2: Steps for the mass cancellation mechanism 

Step Estimate Mathematical 

Equation 

Filtering Factor 

Step1 (P =
2) 

yn yn

= xn −
f(xn)

f ,(xn)
 

None 

Step2 (P =
4) 

zn zn = yn −
f(yn)

f,(xn)
. 

A 

A =
f(xn)

f(xn) − 2f(yn)
 

Step3 (P =
8) 

wn wn = zn −
f(zn)

f,(xn)
 

. L 

L = 1 + (
f(zn)

f(yn)
)

2
+

f(zn)

f(xn)
 

Step4(P =
16) 

xn+1 xn+1

= wn

−
f(wn)

f ,(xn)
 . T 

T = A +
f(wn)

f(zn)
+

2f(wn)

f(yn)
+

f(wn)

f(xn)
 . A    

 

 

http://www.doi.org/10.62341/afna3576
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3.2 Detailed Proof of Convergence Order (Taylor Analysis) 

 The proof relies on demonstrating that the error term from each 

previous stage is effectively canceled out by the subsequent filtering 

factor. Below, we provide a detailed explanation of each previous 

method that was used as fundamental steps for our modern 

approach. 

 

Step 1: Standard Newton (Order 2):  

Substituting the Taylor expansions into the Newton formula: 

 

Let en = xn − ξ and cj =
f(j)(ξ)

j!f′(ξ)
 , j = 2, 3, 4 …. Expanding f(xn)and 

f ′(xn)about ξ by Taylor's method, we have 

  

f(xn) = f ′(ξ)[en + c2en
2 + c3en

3 + c4en
4 + c5en

5 + c6en
6 + c7en

7 +
c8en

8 + ⋯ ].                                                                                            (1) 

And 

f ′(xn) = f ′(ξ)[1 + 2c2en
2 + 3c3en

3 + 4c4en
4 + 5c5en

5 + 6c6en
6 +

7c7en
7 + 8c8en

8 + ⋯ ].                                                                      (2) 

 We compensate in 

yn = xn −
f(xn)

f,(xn)
 .  We get  yn = ξ + c2en

2 − 2(c2
2 − c3)en

3 + (4c2
3 −

7c2c3 + 3c4)en
4 + ⋯                                                                         (3) 

ey = yn − ξ = c2en
2 − 2(c2

2 − c3)en
3 + O(en

4)                               (4) 

 

  Step 2:  Proving Order 4 using Factor 𝐀: see [1,9] 

 

Equation  zn = yn −
f(yn)

f,(xn)
 . A, Where A =

f(xn)

f(xn)−2f(yn)
                       (5) 

Now from (3) we get 

 

f(yn) =  f ′(ξ)[c2en
2 − 2(c2

2 − c3)en
3 + (5c2

3 − 7c2c3 + 3c4)en
4 +

⋯ ]                                                                                                  (6) 

From (1) and (6), we obtain 

 

A ≈ 1 + 2c2en + 2c2
2en

2 + O(en
3)                                                   (7) 

 From (2), (6) and (7), we compensate them in (5) to get 

:  

zn = ξ + c2(c2
2 − c3)en

4 + ⋯                                                              (8) 

http://www.doi.org/10.62341/afna3576
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Discussion: The factor A is a clever approximation designed to 

correct en
2and en

3 error, when A is expanded and multiplied by
f(yn)

f,(xn)
 , 

it generates terms that exactly cancel the lower-order errors in ey. 

 

ez = zn − ξ = c2(c2
2 − c3)en

4 + O(en
5)                                                (9) 

 

  Step 3: Proving Order 8 using Factor L: see [9] 

Equation: wn = zn −
f(zn)

f,(xn)
 . L where L = 1 + (

f(zn)

f(yn)
)

2

+
f(zn)

f(xn)
                    

(10) 

Now from (8): 

f(zn) = f ′(ξ)[(c4en
4 + O(en

5)) + c2(c4
2en

8 + O(en
9 )) + c3(c4

3en
12

+ ⋯ ]                                                                           (11) 

From (1), (6), (8) and (11), we compensate them in (10) to get:   

ew = wn − ξ = ez − [
f(zn)

f′(xn)
 . L]                                                  (12) 

ew = c8en
8 + O(en

9 )                                                                     (13) 

 

Discussion: The complex structure of L utilizes the fact 

thatf(zn)\f(yn) = O(en
2). This factor is designed to estimate the 

effect of the higher derivative terms (c4,c5 , c6 ,c7) and perform the 

required cancellations up to the seventh order. Therefore, L 

estimates and cancels the remaining error coefficients from higher 

derivativesc4en
4  to c7en

7. 

 

Step 4: Proving Order 16 via Mass Cancellation T: 

    

Equation: xn+1 = wn −
f(wn)

f,(xn)
 . T   where T =  A +

f(wn)

f(zn)
+

2f(wn)

f(yn)
+

f(wn)

f(xn)
 . A                                                                                                    (14)

  
Discussion: The factor T     is the ultimate corrector. It is structurally 

engineered to perform mass cancellation of all error terms from en
8 

through en
15. By utilizing 

f(wn) =  𝑓 ,(𝜉)[𝑒𝑤 + 𝑐2𝑒𝑤
2 + 𝑐3𝑒𝑤

3 + ⋯ ]                                    (15) 

T ≈ 1 + 2𝑐2𝑒𝑛 + 3𝑐3𝑒𝑛
2 + ⋯                                                           (16) 

http://www.doi.org/10.62341/afna3576
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Since  
f(wn)

f,(xn)
≈ 𝑒𝑤(1 − 2𝑐2𝑒𝑛 − 3𝑐3𝑒𝑛

2 − ⋯ )                              (17) 

From equations (1), (2), (6), (7), (11), (15), (16), and (17), we 

compensate them in (14) to get: 

 

en+1 = xn+1 − ξ = C16en
16 + O(en

17). 

 

3.3 Numerical Validation and Comparative Analysis 

Let us perform some numerical tests and compare the efficiency 

proposed method (Step4) with classical Newton, and (step 3) 

method. 

We take ε = 1.0 e−17 as shown in Table 3. 

 
Table 3: Numerical Validation 

Function              Root 

f1 = x3 − 10 2.1544346900318837 

f2 = e−x − x2 = 0 0.7034674224983916 

f3 = cos x − x 0.7390851332151606 

f4 = x3 + 4x2 − 10 1.3652300134140968 

 

The method's performance is tested across three distinct equations, 

comparing the required total number of iterations (N) for different 

convergence orders to achieve machine precision(10−17). 

3.4 Comparative Performance:  

 

The following table provides a comprehensive comparison of the 

four methods presented earlier, supported by the examples given in 

Table 4. 

 
Table 4: Examples and Comparative Performance 

Function  Initial Guess 

(𝐱𝟎) 

Order (𝐏) Total 

Iterations 

(𝐍)𝐟𝐨𝐫 𝟏𝟎−𝟏𝟔 

True Error at 

End of 

 𝐍 = 𝟏(𝐞) 

𝐱𝟑 − 𝟏𝟎
= 𝟎 

𝐱𝟎 = 𝟐. 𝟎 

(𝐞𝟎

≈ 𝟎. 𝟏𝟓𝟒𝟒) 

2 (Newton) 5 𝐞𝐲

≈ 𝟏. 𝟐𝟗 × 𝟏𝟎−𝟐 

  8 (Step3) 2 𝐞𝐰

≈ 𝟓. 𝟐𝟐 × 𝟏𝟎−𝟕 

  16 (step 4) 1 𝐞𝐧+𝟏

≈ 𝐎(𝟏𝟎−𝟏𝟕) 
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Function  Initial Guess 

(𝐱𝟎) 

Order (𝐏) Total 

Iterations 

(𝐍)𝐟𝐨𝐫 𝟏𝟎−𝟏𝟔 

True Error at 

End of 

 𝐍 = 𝟏(𝐞) 

𝐞−𝐱 − 𝐱𝟐

= 𝟎 

𝐱𝟎 = 𝟎. 𝟓 

(𝐞𝟎

≈ 𝟎. 𝟐𝟎𝟑𝟓) 

2 (Newton) 5 𝐞𝐲

≈ 𝟏. 𝟖𝟓 × 𝟏𝟎−𝟐 

  8 (Step3) 2 𝐞𝐰 ≈ 𝐎(𝟏𝟎−𝟕) 

  16 (step 4) 1 𝐞𝐧+𝟏

≈ 𝐎(𝟏𝟎−𝟏𝟕) 

𝐜𝐨𝐬(𝐱)
− 𝐱 = 𝟎 

𝐱𝟎 = 𝟏. 𝟎 

(𝐞𝟎

≈ 𝟎. 𝟎𝟑𝟗𝟏) 

2 (Newton) 4 𝐞𝐲

≈ 𝟑. 𝟓𝟏 × 𝟏𝟎−𝟒 

  8 (Step3) 2 𝐞𝐰

≈ 𝟒. 𝟔𝟓 × 𝟏𝟎−𝟕 

  16 (step 4) 1 𝐞𝐧+𝟏

≈ 𝐎(𝟏𝟎−𝟏𝟕) 

𝐱𝟑 + 𝟒𝐱𝟐

− 𝟏𝟎 = 𝟎  
𝐱𝟎 = 𝟏. 𝟓 

(𝐱𝟎

≈ 𝟎. 𝟑𝟔𝟓𝟐 

2 (Newton) 8 𝐞𝐲

≈ 𝟖. 𝟗𝟑 × 𝟏𝟎−𝟐 

  8 (Step3) 2 𝐞𝐰

≈ 𝟒. 𝟎𝟕 × 𝟏𝟎−𝟕 

  16 (step 4) 1 𝐞𝐧+𝟏

≈ 𝐎(𝟏𝟎−𝟏𝟕) 

 

4. Discussion on Stability and Final Conclusions 

 

While highly efficient, high-order methods exhibit increased 

sensitivity: 

1. Initial Guess Sensitivity (x0): High-order methods are more 

sensitive to the starting point. A poor x0 choice may lead to 

divergence. 

2. Critical Points: All Newton-type methods depend on 1\f ,(xn). 

If f ,(xn) is near zero, the process suffers from numerical instability. 

Therefore، we can reach the final conclusions that indicate: 

1. The comprehensive analysis unequivocally validates the 

superiority of the P = 16 scheme: 

2. Optimal Performance: The method consistently achieves 

machine precision in a single iteration (N = 1) across diverse 

functions and initial error levels, as predicted by the EI ≈ 1.741. 
3. Theoretical Success: The core achievement is demonstrating 

that complex, high-order convergence can be achieved efficiently 
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by substituting derivative calculations with intelligently constructed 

ratio-based filtering factors (A, L, T). 

 

5. Analytical Comparison with Benchmark Optimal Methods  

To substantiate the superiority of the proposed method (P = 16), a 

deep analytical comparison is presented against the optimal King 

method of order eight (P = 8) and other King-Type methods that 

achieve the same optimal order (P = 16). This comparison 

reinforces the academic contribution of your method. 

 

1.1 . Comparison of Marginal Gain and Efficiency Index (EI) 
 Table 5 illustrates the balance between the order of convergence 

(P) and the computational cost (d) for various optimal methods 

(satisfying   Kung-Traub conjecture P ≤ 2d−1). 

Table 5: Comparison of Marginal Gain and Efficiency Index 

Criterion Optimal King 

Method (Order8) 

Proposed Method 

(Order 16) 

Order of convergence 

(P) 

8 16 

Number of Evaluations 

(d) 

4 (3 f and 1 f ,) 5 (4 f and 1 f ,) 

Efficiency Index (EI =

P1/d) 

81/4 ≈ 1.682 161/5 ≈ 1.741 

Marginal Gain (EI Gain) EI16

EI8
≈ 1.0353 

 

5.2. Discussion: 
The proposed method achieves an increase in efficiency of 

approximately 3.53% in exchange for adding only one extra 

function evaluation. This improvement in the Marginal Gain proves 

that the utilization of the fifth evaluation (d = 5) was optimal for 

doubling the convergence order from 8 to 16. 
 

6.  Mathematical and Algebraic Construction Comparison for 

Optimal P=16 Methods 

 King-Type [P = 16] and mass cancellation mechanism (proposed 

method) considered highly effective approaches in achieving an 

equivalent level of optimal efficiency. Never the less, the primer 
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distinctive lies in the mathematical cancellation mechanism and the 

stability of the asymptotic error constant[c16]. Table 6 presents a 

comparison of the mathematical and algebraic constructions of the 

P=16 optimization methods 

Table 6: Mathematical and Algebraic Construction 

Comparison 
Criterion Standard King-Type 

Method (Order 16) 

Proposed Method (Mass 

Cancellation 

Mechanism) 

Proof Mechanism Weight function: 

depends on the in 

tegration of a 

complex weight 

function or 

generalized divided 

differences to elevate 

the uncommuted 

derivative. 

Mass Cancellation 

Mechanism: is based on 

filtering factors (A, L, T) 

obtained by a direct 

algebraic design to 

successively cancel all 

error components up 

to𝐞𝐧
𝟏𝟓. 

The formula of final 

step correction 

The dynamically 

changing divided 

differences is what 

weight function 

relies on 

𝐱𝐧+𝟏

= 𝐳𝐧 −
𝐟(𝐳𝐧)

[𝐰𝐧 , 𝐳𝐧 ; 𝐟]
  

𝐱𝐧+𝟏 = 𝐰𝐧 −
𝐟(𝐰𝐧)

𝐟,(𝐱𝐧)
 . T 

It relies on the 

denominator (the 

constant𝐟,(𝐱𝐧)). 

The stability 

asymptotic Error 

Constant (𝐂𝟏𝟔). 

The flexibility of the 

weight functions or 

free parameters that 

potentially leads to 

slight instability in 

the first iteration 

may have their 

influence on the 

constant[𝐂𝟏𝟔]. 

Due to the explicit 

algebraic cancellation, 

the resulting constant 

𝐂𝟏𝟔 is stable and 

extremely small leading 

to superior convergence. 

 

Based on the information provided in Tables (5, 6), we can reach 

the following conclusions: 
First: Vs. Optimal King Method (P=8):  

The proposed method achieves a computational efficiency that is 

3.53% higher than the optimal King method of Order 8. This 

analysis confirms that the fifth evaluation (d=5) was optimally 

utilized to double the convergence order. 

http://www.doi.org/10.62341/afna3576


 

 Volume 38 العدد

  1Partالمجلد 
 

International Science and 

Technology Journal 

 المجلة الدولية للعلوم والتقنية

http://www.doi.org/10.62341/afna3576 

 

 حقوق الطبع محفوظة 
 لعلوم والتقنية الدولية ل مجلةلل

 

Copyright © ISTJ   14 

 
 

 

Second: Vs. King-Type Methods (P=16):  
Its "Mass Cancellation Mechanism" distinguishes the method from 

other competing King-Type methods that achieve the same 

efficiency (EI ≈ 1.741). Your method relies on a precise algebraic 

construction of filtering factors, which provides better stability for 

the asymptotic error constant (c16) compared to competitors that 

rely on complex weight functions or dynamic divided differences. 

This comparative analysis shows that the mass cancellation 

mechanism is a reliable method while achieving the same optimal 

efficiency as standard king-type method; it stands out due to more 

precise and rigorous algebraic construction through a collective 

cancellation technique that guarantees stable and optimal 

convergence.  

 

Conclusion: 

       This research confirms the success of the design and 

development process of the multipoint iterative method, which 

achieved optimal convergence of order sixteen (P=16) for solving 

nonlinear equations 𝑓(𝑥) = 0.  The significance of this work lies in 

achieving superorder convergence at the lowest possible 

computational cost: only five function/derivative evaluations (d=5) 

per iteration, making it an optimal method according to the Kong-

Traub conjecture. The true innovation lies in replacing the need for 

higher-order derivative calculations with cleverly designed filtering 

factors. 

       The precise mathematical steps confirmed the effectiveness of 

the final operator T (in step 4), which performs a "complete 

cancellation" of all error components from order 8 to order 15. This 

makes the mechanism offer a more precise and rigorous algebraic 

construction, thus ensuring superior stability of the final error 

constant C16 compared to competing King-Type methods of the 

same order. This is achieved through numerical examples 

performed on a variety of nonlinear equations. 
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